Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
The Industrial Metaverse provides unparalleled prospects for increasing productivity and efficiency across multiple sectors. As wireless sensor networks play an important role in data collection and transmission within this ecosystem, preserving context privacy becomes critical to protecting sensitive information. This paper investigates the issue of context privacy preservation for user validation via AccesSensor in the Industrial Metaverse and presents a technological method to address it. We explore the need for context privacy, look at existing privacy preservation solutions, and propose novel user validation methods that are customized to the Industrial Metaverse’s access system. This method is evaluated on time-based efficiency, privacy method and bandwidth utilization. Our method performs better as compared to the DPSensor. Our research seeks to provide insights and recommendations for developing strong privacy protection methods in wireless sensor networks that operate within the Industrial Metaverse ecosystem....
Electrical tomography sensors have been widely used for pipeline parameter detection and estimation. Before they can be used in formal applications, the sensors must be calibrated using enough labeled data. However, due to the high complexity of actual measuring environments, the calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can generally decrease the error of labeling data in any sensor calibration process....
In view of the problem that the output thrust of the solenoid actuator is affected by various factors and is difficult to calculate in actual working conditions, this paper proposes a semi-analytical model constructed by magnetic field subdomain method with internal and external boundary conditions in a cylindrical coordinate system for calculation, and the general solution equations of magnetic vector potential for each subdomain are derived and solved by MATLAB. Taking a push– pull electromagnet as an example, the finite element simulation and experimental comparative analysis are carried out. The correctness and applicable conditions of the subdomain method are illustrated by comparing the gradient plot of magnetic vector potential, inductance curve and electromagnetic force. It is shown that the results calculated by the subdomain method are very close to the finite element method when the magnetic saturation problem is neglected. However, when the nonlinearity of core permeability is considered, the magnetic saturation gradually deepens with the increase in current, and the error of the subdomain method calculation results gradually increases. Through simulation and experimental verification at slight magnetic saturation, the output thrust after considering the core gravity, spring force and electromagnetic force, it is shown that this method has the advantage of computational flexibility compared with the finite element method, and it is easier to write special algorithms according to various working conditions to calculate the important parameters in engineering applications....
Inline analytics in industrial processes reduce operating costs and production rejection. Dedicated sensors enable inline process monitoring and control tailored to the application of interest. Nuclear Magnetic Resonance is a well-known analytical technique but needs adapting for low-cost, reliable and robust process monitoring. A V-shaped low-field NMR sensor was developed for inline process monitoring and allows non-destructive and non-invasive measurements of materials, for example in a pipe. In this paper, the industrial application is specifically devoted to the quality control of anode slurries in battery production. The characterization of anode slurries was performed with the sensor to determine chemical composition and detect gas inclusions. Additionally, flow properties play an important role in continuous production processes. Therefore, the in- and outflow effects were investigated with the V-shaped NMR sensor as a basis for the future determination of slurry flow fields....
This article proposes a formula for calculating the nonlinear displacement of the electrothermal V-shaped actuator aims to determine more accurately its displacement. The nonlinear displacement model is established based on the axial deformation of V-beams with two fixed ends. Hence, the theoretical displacements of a particular V-shaped actuator (i.e. dimension as beam length of 750 μm; beam width of 6 μm; beam thickness of 30 μm; inclined angle of 2°) are compared with the simulation and experimental results. The evaluation shows that our calculation error compared with the simulation and experiment is less than 5% and 12.4%, respectively. This confirmed the advantages of the proposed formula according to the nonlinear displacement model. This work provides a theoretical model for predicting more precisely the displacement of a V-shaped actuator. The advantage of this model is that it will significantly reduce the time in the design and trial manufacturing process....
Loading....